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Abstract
We study limits of particular importance of the bilinear hypergeometric
equation introduced in [8]. As part of this study, we examine connections
between the rationality of certain indefinite integrals and the equilibrium
of Coulomb charges in the complex plane (or point vortices in two-
dimensional hydrodynamics). Relationships with integrable models which
are generalizations of the Calogero–Moser systems are also discussed.

PACS numbers: 02.30.Ik, 02.30.Hq, 02.30.Gp

1. Introduction

The bilinear hypergeometric equation is a generalization of the Gauss hypergeometric equation
[6] and the bilinear differential equation for the Adler–Moser polynomials [1]. It has appeared
in its generic form in [8] in connection with integrable dynamics of certain systems.

In the present work, we consider its limits of particular importance related to the
equilibrium of free Coulomb charges (or point vortices) in the complex plane. We also
introduce integrable dynamical systems for which these equilibrium configurations are fixed
points.

Instead of, considering directly different limits of the generic equation [6], we start with
a more instructive and mathematically interesting approach similar to [3].

In their 1929 paper, Burchnall and Chaundy [3] examined the following (apparently
elementary) question: what condition must be satisfied by two polynomials p(z) and q(z) in
one variable z in order that the indefinite integrals∫ (

p(z)

q(z)

)2

dz,

∫ (
q(z)

p(z)

)2

dz (1)

may be rational, i.e. expressible without logarithms. Under the assumption that p and q have
no common or repeated factors, the problem is reduced to finding polynomial solutions of the
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following bilinear differential equation:

p′′q − 2p′q ′ + pq ′′ = 0. (2)

It was shown that solutions to (2) are Adler–Moser polynomials (polynomial τ -functions of
the KdV equation) [1]:

p = θi q = θi+1 θ0(z) = 1 θ1(z) = z deg θi = i(i + 1)

2
. (3)

Equation (2) can be viewed as a second-order (two-term) differential-recurrence relation for
the the Adler–Moser polynomials θi, θi+1. It can be rewritten as the first-order (three-term)
relation [1, 3]

θ ′
n+1θn−1 − θn+1θ

′
n−1 = (2n + 1)θ2

n . (4)

Considering (4) as a first-order linear differential equation for θn+1, we obtain recursively all
solutions introducing an integration constant at each step. It is important to stress that the
solutions of this differential equation are polynomials due to the rationality of integrals (1).

Thus, the nth polynomial depends on n free parameters

θn = θn(z; t1, t2, . . . , tn). (5)

Several first examples of the Adler–Moser polynomials are as follows:

θ0 = 1
θ1 = z

θ2 = z3 + t2

θ3 = z6 + 5t2z
3 + t3z − 5t2

2
....

(6)

In (6), we set t1 = 0, since t1 can be absorbed by the translation z → z + t1.
It was observed in [2] that roots of the consecutive polynomials θi, θi+1 are the equilibrium

coordinates of i(i + 1)/2 positive and (i + 1)(i + 2)/2 negative Coulomb charges (with values
±1 respectively) on the plane interacting through a two-dimensional (logarithmic Coulomb)
potential. Namely, the function

E =
n(n+1)/2∑
i<j=1

ln |xi − xj | +
(n+1)(n+2)/2∑

i<j=1

ln |yi − yj | −
n(n+1)/2∑

i=1

(n+1)(n+2)/2∑
j=1

ln |xi − yj |

has a critical point when xi and yi are roots of θn and θn+1 respectively.
It must be mentioned that, although relations between zeros of different kinds of (classical

orthogonal) polynomials and the equilibrium of identical charges (in different external fields)
on the real line have been known since the works by Sego [11], similar questions of equilibrium
of nonidentical charges have not been addressed.

The constructive way to find the Adler–Moser polynomials is to use their determinant
representation constructed by means of the Darboux–Crum transformations of the operator
d2/dz2.

In more detail, equation (2) can be rewritten in the two equivalent Schrödinger forms
(recall that p = θi, q = θi+1)

Hi

[
θi+1

θi

]
= 0 or Hi+1

[
θi

θi+1

]
= 0 Hi = d2

dz2
+ 2(ln (θi))

′′.

The two representations of (2) above are connected by permutation of the first-order factors
in the second-order differential operators Hi .
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Using this observation we can extend, the factorization chain by induction, obtaining
the Adler–Moser polynomials at each step. The following figure demonstrates steps of this
procedure:

↓
Hi = LiMi = Mi+1Li+1

↓
Hi+1 = Li+1Mi+1 = Mi+2Li+2

↓
Hi+2 = Li+2Mi+2 = · · ·

(7)

where

Li = θi(z)

θi−1(z)

d

dz

θi−1(z)

θi(z)
Mi = θi−1(z)

θi(z)

d

dz

θi(z)

θi−1(z)

and L0 = M0 = d/dz.
In (7), arrows denote transitions (Darboux transformations) from the second-order

differential operator Hi to Hi+1 by the permutation of factors Mi+1, Li+1 while, between
these transitions, we vary the factors Li → Mi+1,Mi → Li+1, keeping Hi unchanged. This
variation of factors is possible due to the freedom in choosing linearly independent solutions
of the second-order operator Hi , which amounts to acquiring a free parameter at each level of
factorization (see (5)).

From (7), we derive the intertwining differential operators Di,Ui

Ui

d2

dz2
= HiUi

d2

dz2
Di = DiHi Di = Mi · · ·M1 Ui = L1 · · · Li (8)

connecting H0 = d2/dz2 with Hi .
This, together with the obvious property DiUi = d2i

dz2i , leads to the Wronskian
representation for the Adler–Moser polynomials. In more detail [3, 1]

θn = const W [ψ1, . . . , ψn] ψ ′′
n = ψn−1 ψ1 = z (9)

where the nth polynomial is (up to a constant factor) the Wronskian W = det ‖diψj/

dzi‖0�i�n−1,1�j�n.
The intertwining operators are also expressible in terms of Wronskians. For instance

Ui[ψ] = W [ψ1, . . . , ψi, ψ]/W [ψ1, . . . , ψi]. (10)

2. Indefinite integrals related to equilibrium of charges

By analogy with the previous section, we pose the following question: when is an equilibrium
condition for charges of different sign equivalent to rationality of some indefinite integrals?

Before addressing this question we write the equilibrium equation for two types of charges
in terms of polynomials.

Lemma 1. Let

E =
∑

1�i<j�n+m

QiQj ln |zi − zj | (11)

be a real function of n + m complex variables zi ∈ C, i = 1, . . . , n + m and

Qi ∈ R Qi =
{

1 i = 1, . . . , n

−� i = n + 1, . . . , m + n
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Then E has a critical point at

zi =
{
xi i = 1, . . . , n

yi−n i = n + 1, . . . , m + n

iff

{p, q}� := d2p(z)

dz2
q(z) − 2�

dp(z)

dz

dq(z)

dz
+ �2p(z)

d2q(z)

dz2
= 0 (12)

where p, q are the following polynomials:

p(z) =
n∏

i=1

(z − xi) q(z) =
m∏

i=1

(z − yi).

Proof. The proof can be shown by a calculation. We use the partial-fraction decomposition
of {p, q}�

pq
around singular points xi and yi . �

Now we are in position to find an equivalent condition for p and q in terms of rational
integrals.

Indefinite integrals of the algebraic function do not contain logarithmic terms if the
function does not have singularities of the type z−1. The following lemma shows when certain
functions, related to solutions of (12), are free of simple poles and their integrals are rational.

Lemma 2. Let p(z) = ∏n
i=1(z − xi), q(z) = ∏m

i=1(z − yi) not have multiple or common
roots. Then residues of simple poles of q2�/p2 and p2/�/q2 vanish:

Resz=xi

q(z)2�

p(z)2
= 0 i = 1, . . . , n Resz=yi

p(z)2/�

q(z)2
= 0 i = 1, . . . , m

iff p and q satisfy (12).
Both indefinite integrals∫

q(z)2�

p(z)2
dz,

∫
p(z)2/�

q(z)2
dz (13)

are rational iff p, q satisfy (12) with � = 1/2, 1, 2.

Proof. Let us factorize p(z) as p(z) = (z − xi)P (z). Then the condition Resz=xi

q(z)2�

p(z)2 = 0
implies that

d

dz

(
q(z)2�

P (z)2

)
z=xi

= 0.

Since P(xi) = p′(xi), P
′(xi) = p′′(xi)/2, we obtain the following equation:

p′′(xi)q(xi) − 2�p′(xi)q
′(xi) = 0.

Thus, since xi are roots of p(z),

p′′(z)q(z) − 2�p′(z)q ′(z) = a(z)p(z) (14)

where a(z) is a polynomial.
Similarly, from the condition Resz=yi

p(z)2/�

q(z)2 = 0, we obtain

�2p(z)q ′′(z) − 2�p′(z)q ′(z) = b(z)q(z). (15)

Adding �2p(z)q ′′(z) to (14) and p′′q(z) to (15), we get

p′′(z)q(z) − 2�p′(z)q ′(z) + �2p(z)q ′′(z) = A(z)p(z) = B(z)q(z)

where A(z) = a(z) + �2q ′′(z), B(z) = b(z) + p′′(z).
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Since p(z) and q(z) do not have common roots, it follows from

A(z)p(z) = B(z)q(z)

that A(z) = N(z)q(z), B(z) = N(z)p(z), where N(z) is a polynomial. Thus, we arrive at

p′′(z)q(z) − 2�p′(z)q ′(z) + �2p(z)q ′′(z) = N(z)p(z)q(z). (16)

The degree of the polynomial on the left-hand side of (16) is at most deg(q)+deg(p)−2 while
the degree on the right-hand side is at least deg(q) + deg(p), unless N(z) = 0. Therefore,
N(z) = 0 and we obtain (12).

The choice � = 1/2,� = 1,� = 2 is essential for the rationality of (13) because both
exponents 2� and 2/� are integers. This completes the proof. �

Since the cases � = 1/2 and � = 2 are equivalent (one is connected with the
other by permutation of p with q), we have two second-order bilinear differential relations
corresponding to two types of rational integrals

• Adler–Moser polynomials, � = 1 (see [3]),

{p, q}1 = d2p(z)

dz2
q(z) − 2

dp(z)

dz

dq(z)

dz
+ p(z)

d2q(z)

dz2
= 0

(17)∫
q(z)2

p(z)2
dz,

∫
p(z)2

q(z)2
dz.

• � = 2,

{p, q}2 = d2p(z)

dz2
q(z) − 4

dp(z)

dz

dq(z)

dz
+ 4p(z)

d2q(z)

dz2
= 0

(18)∫
q(z)4

p(z)2
dz,

∫
p(z)

q(z)2
dz.

Equation {p, q}2 = 0 has been mentioned in [2] in connection with the problem of
equilibrium of the point vortices in two-dimensional hydrodynamics.

The following sections are devoted to the investigation of the second case and its
generalizations.

3. Λ = 2

We begin by summing up what we have obtained so far.
Let p(z) and q(z) be polynomials of the complex variable z which do not have common

or multiple roots.
We study the following three problems.

• When are the indefinite integrals∫
p

q2
dz,

∫
q4

p2
dz (19)

rational?
• When can the system of n and m Coulomb charges of values 1 and −2 respectively be in

equilibrium in the complex plane and what are the coordinates of the charges?
In other words, when does the energy function

E =
∑
i<j

QiQj log |zi − zj | Qi =
{

1 i = 1, . . . , n

−2 i = n + 1, . . . , n + m
(20)

have a critical point and at which zi, i = 1, . . . , n + m?
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• When does the equation

{p, q}2 = 0 (21)

have polynomial solutions?

The answer to the above three questions is given by the following proposition.

Proposition 1. Let i ∈ Z, and (modulo translation of z) p−1 = z, p0 = q0 = 1, q1 = z.
Then

• all solutions of the recurrence relations

q ′
i+1qi − qi+1q

′
i = (3i + 1)pi

p′
ipi−1 − pip

′
i−1 = (6i − 1)q4

i

(22)

are polynomials of degrees

deg(pi) = i(3i + 2) deg(qi) = i(3i − 1)/2 i ∈ Z.

They provide all solutions of (21)

{pi, qi}2 = {pi, qi+1}2 = 0 i ∈ Z.

• Integrals (19) are rational iff p and q are connected by the bilinear equation (21), i.e. iff

p = pi q = qi or p = pi q = qi+1.

• The energy function (20) has a critical point provided zi are zeros of the above pairs of
polynomials: zeros of p and q being positions of charges 1 and −2 respectively.

Proof.

• The equivalence between the bilinear equation (21) and rationality of integrals (19) is a
corollary of lemma 2.

• The equivalence between (21) and the existence of critical points of the energy function
(20) is a corollary of lemma 1.

• Since p = zn + · · · , q = zm + · · ·, from the highest symbol of (21) we get the Diophantine
equation connecting n with m

(n − 2m)2 − n + 4m = 0.

Its solutions are

n = ni m = mi or n = ni m = mi+1 i ∈ Z

where

ni = i(3i + 2) mi = i(3i − 1)

2
.

Let {pi, qi}2 = 0. Considering this equation as a second-order differential equation with
a solution qi , by elementary methods we find that its second linearly independent solution
is given by

qi+1 = (3i + 1)qi

∫
pi

q2
i

dz {pi, qi+1}2 = 0 (23)

and is a polynomial by the rationality of (19). The degrees of polynomials are connected
by

deg(qi+1) + deg(qi) = deg(pi) + 1.

It is seen that this relation is satisfied if deg(pi) = ni, deg(qi) = mi .
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A similar procedure holds if we fix qi and consider pi−1 and pi as linearly independent
solutions of (21):

pi = (6i − 1)pi−1

∫
q4

i

p2
i−1

dz. (24)

Having freedom in choosing linearly independent solutions of (21), we write analogues
of (23) and (24) for decreasing indices

qi = −(3i + 1)qi+1

∫
pi

q2
i+1

dz pi−1 = −(6i − 1)pi

∫
q4

i

p2
i

dz (25)

and we can generate pi, qi by induction in either direction starting at some i.
Since ni and mi are strictly increasing for i � 0 (strictly decreasing for i � 0) and
m0 = n0 = 0, the induction terminates for these two branches at p0 = q0 = 1.
Rewriting (23), (24) or (25) in differential form, we get the first-order recurrence relations
(22), which completes the proof. �

Here we write several examples of polynomials satisfying the above conditions for the
branch i � 0

q0 = 1 p0 = 1
q1 = z p1 = z5 + t1

q2 = z5 + τ2z − 4t1 p2 = z16 + · · ·
...

...

and for the branch i � 0

p0 = 1 q0 = 1
p−1 = z q−1 = z2 + τ−1

p−2 = z8 + 28
5 τ−1z

6 + 14τ 2
−1z

4 q−2 = z7 + 7τ−1z
5 + 35τ 2

−1z
3

+ 28τ 3
−1z

2 + t−2z − 7τ 4
−1 + τ−2z

2 − 35τ 3
−1z + τ−1τ−2 − 5

2 t−2

...
...

where ti and τi represent arbitrary parameters.

4. Intertwining and factorization

One can try to find polynomials for � = 2 explicitly by analogy with the Adler–Moser case
through a factorization similar to (7)–(9).

It is easy to observe that equation (21) can be written in two different Schrödinger forms

S

[
p

q2

]
=

(
d2

dz2
+ 6(ln q)′′

) [
p

q2

]
= 0 (26a)

S̃

[
q√
p

]
=

(
d2

dz2
+

3

4
(ln p)′′

)[
q√
p

]
= 0 (26b)

connected by the following factorization:

p

q2
S = LM

p

q2
S̃ = ML L = d

dz

√
p

q
M = p3/2

q3

d

dz

q2

p
.

Since p = pi−1 and p = pi are solutions of (21) with q = qi , we can put any of them in
(26a) with q = qi . A similar fact holds for (26b), with q = qi or q = qi+1 and p = pi .
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This ambiguity in the choice of solutions results in the possibility of different factorizations
for the same second-order operator. We recall that a similar possibility led to the explicit
representation of the Adler–Moser polynomials for � = 1.

By analogy with (7), the factorization scheme has the following form:

↓
pi−1

q2
i

Si = L̃iM̃i → pi

q2
i

Si = LiMi

↓
pi

q2
i

S̃i = MiLi → pi

q2
i+1

S̃i = M̃i+1L̃i+1

↓
pi

q2
i+1

Si+1 = L̃i+1M̃i+1 →

(27)

where

L̃i = d

dz

√
pi−1

qi

M̃i = p
3/2
i−1

q3
i

d

dz

q2
i

pi−1
Li = d

dz

√
pi

qi

Mi = p
3/2
i

q3
i

d

dz

q2
i

pi

.

The horizontal arrows in (27) correspond to factorizations connected with different choices
of p at fixed q and vice versa, while the vertical arrows correspond to permutation of factors.
Comparing (27) with (7), we see horizontal arrows instead of equalities. Different from (7),
the variation of factors at each level of ‘Darboux’ transformation is now accompanied by a
change of prefactors in front of the Schrödinger operators Si . Due to this change we do not
have simple intertwining relations between S0 = d2/dz2 and Si : now, there are two different
UL,UR (left, right) intertwining operators connecting S0 with Si instead of one,

UL
i S0 = SiU

R
i .

This makes the line of approach used for the Adler–Moser polynomials unpromising for
� = 2.

5. Baker–Akhieser functions, charges in homogeneous field

Consider a modified problem: when are the following indefinite integrals

exp(−kz)

∫
p(k, z)

q(k, z)2
exp(kz) dz exp(2kz)

∫
q(k, z)4

p(k, z)2
exp(−2kz) dz (28)

rational? In (28), k is any complex number.
We call the function

�(k, z) = p(k, z)

q(k, z)2
exp(kz) (29)

the rational Baker-Akhieser function for � = 2 by analogy with the � = 1 case (see below).
Similar to section 3 we can state the following.

Proposition 2. Suppose that polynomials p(k, z), q(k, z) in z do not have repeated or common
roots. The following three statements are equivalent:

• the indefinite integrals

exp(−kz)

∫
�(k, z) dz, exp(2kz)

∫
�(k, z)−2 dz

are rational in z functions, expressible without logarithms.
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• The energy function

E = k
∑

i Qizi +
∑

i<j QiQj ln |zi − zj |
Qi =

{
1 i = 1, . . . , n

−2 i = n + 1, . . . , m + n
n = deg(p) m = deg(q)

(30)

has a critical point at

zi =
{
xi(k) i = 1, . . . , n

yi−n(k) i = n + 1, . . . , m + n

where xi, yi are roots of

p =
n∏

i=1

(z − xi(k)) q =
m∏

i=1

(z − yi(k)).

• p, q satisfy the following equation:

0 = {p, q}(k)
2 := {p, q}2 + 2k(p′q − 2q ′p). (31)

Proof. The proof follows arguments similar to lemmas 1 and 2. �

One can easily see that equation (30) describes equilibrium of two types of charges with
values 1, −2 in the homogeneous electric field.

Another observation consists in the fact that

p(k, z) = p(ζ ) q(k, z) = q(ζ ) ζ = kz. (32)

Indeed, one can easily check this by scaling zi, i = 1, . . . , n + m in (30), or by changing the
integration variable z → ζ = kz in (28).

Thus, we can set k = 1 whenever k �= 0.
Equating highest symbols in (31), we obtain the following simple lemma.

Lemma 3. Let p, q satisfy conditions of proposition 2, then their degrees are related by

deg(p) = n = 2m = 2 deg(q).

In other words, the total charge has to be zero in order that the system is at rest in the
homogeneous field of magnitude k.

Although the case � = 2 has some similarities with � = 1, the same approach to explicit
representation of pi, qi , as shown in section 4, no longer applies.

Here we write several first examples of pi(k, z), qi(k, z):

q0(k, z) = 1 p0(k, z) = 1

q1(k, z) = ζ p1(k, z) = ζ 2 − 3ζ + 3

q2(k, z) = ζ 3 + t2ζ
2 +

t2
2 + 6

3
ζ

p2(k, z) = ζ 6 + (−9 + 2t2) ζ 5 +
(
40 − 15t2 + 5

3 t2
2

)
ζ 4 (33)

+
(−96 + 52t2 − 10t2

2 + 2
3 t3

2

)
ζ 3 +

(
112 − 90t2 + 76

3 t2
2 − 3t3

2 + 1
9 t4

2

)
ζ 2

+
(−48 + 66t2 − 28t2

2 + 5t3
2 − 1

3 t4
2

)
ζ − 18t2 + 10t2

2 − 3t3
2 + 1

3 t4
2 + 48

where t2 is an arbitrary constant.
It is easy to show that solution (33) is generic for m = 3, in the sense that it is not

contained in a wider class. In other words, coefficients of (properly normalized) q2 cannot
depend on more than one free parameter.
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Indeed, we can always take q2 to be monic and without a constant term (by fixing one root
at z = 0). If q2 depended on more than one parameter, then it would be q2 = z3 + t2z

2 + T z,
where t2 and T are arbitrary constants. In such a case (31) becomes a linear equation for the
coefficients of p2. It is verified by elementary linear algebra that this system is incompatible.
Thus q2 can depend only on one free parameter (say t2).

It is difficult to obtain examples of polynomials of higher degrees, even with the help
of a computer. It is also a nontrivial problem to define degrees of q(k, z). If one assumes
that by analogy with the � = 1 case, the order of qi(k, z) is a quadratic function of i (which
certainly holds for k = 0, see proposition 1), then it follows from the above examples that
deg(qi(k, z)) = i(i + 1)/2.

6. Scaling, reparametrization and bispectrality

A statement similar to proposition 2 holds for the case � = 1 with the Baker–Akhieser
function ψ = (p/q) exp(kz) instead of (29) and symmetric rationality conditions for the
indefinite integrals

exp(−kz)

∫
ψ dz exp(kz)

∫
ψ−1 dz.

The electrostatic analogy describes charges 1, −1 in a homogeneous field and equation (31)
is replaced by

0 = {p, q}1 + 2k(p′q − q ′p).

This equation can be rewritten in the Schrödinger form

Lψ(k, z) =
(

d2

dz2
+ V

)
ψ(k, z) = k2ψ(k, z) V = 2

d2

dz2
log q. (34)

It follows from (8) and (10) (see [1] for more details) that the solution of (34) is obtained by the
action of the intertwining operator (10) on the eigenfunction exp(kz) of the free Schrödinger
operator d2/dz2. This solution is the Baker–Akhieser function:

ψ = W [ψ1, . . . , ψn, exp(kz)]/W [ψ1, . . . , ψn].

Therefore, according to (9)

p(k, z) = exp(−kz)W [ψ1, . . . , ψn, exp(kz)] q(k, z) = W [ψ1, . . . , ψn] = const θn(z).

On the other hand, by arguments leading to (32), we see that(
d2

dζ 2
+ V

)
ψ(ζ ) = ψ(ζ ) V = 2

d2

dζ 2
log q (35)

with

ψ(ζ ) = p(ζ )

q(ζ )
exp(ζ ) p(ζ ) = exp(−ζ )W [ψ1(ζ ), . . . , ψn(ζ ), exp(ζ )]

q(ζ ) = const θn(ζ ).

We observe that potential V = V (z) in (34) is independent of k, while potential V = V (ζ ),
in (35), depends on k. This is due to the fact that rescaling of variable z → ζ = kz can be
absorbed by appropriate changes of the parameters (see e.g. (6))

θn(z; t1, t2, . . . , tn) = k−n(n+1)/2θn(kz; kt1, k
3t2, . . . , k

2n−1tn)

since the Adler–Moser polynomials can be seen as homogeneous polynomials of variables z

and ti , i > 0 with weights 1 and 2i − 1 correspondingly.
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Thus the problem of equilibrium of charges 1 and −1 can be reduced to the spectral
problem for the k-independent operator L (34).

Similarly, one can ask if ψ(k, z) is simultaneously a solution of a spectral problem for a
z-independent differential in k operator A,

Aψ(k, z) = �(z)ψ(k, z) ∂A/∂z = 0

where �(z) is a function of z.
It turns out [5] that such operators exist and belong to the so-called odd bispectral family.
In general, the problem of finding functions satisfying simultaneously a differential

equation in z with k-dependent eigenvalues and a differential equation in k with z-dependent
eigenvalues is called the bispectral problem [5].

Now returning to the main subject of this work, one might expect that the � = 2
case can belong to some other bispectral (e.g. even [5]) family of the differential operators.
Unfortunately, the � = 2 case is not, in general, related to the bispectral problem for a
second-order differential operator. Indeed, equation (31) can be rewritten in the following two
forms:(

d2

dζ 2
+ u(ζ )

)
�(ζ) = �(ζ) u(ζ ) = 6

d2

dζ 2
log q(ζ ) �(ζ ) = p(ζ )

q(ζ )2
exp(ζ )

(36)(
d2

dζ 2
+ v(ζ )

)
�(ζ)−1/2 = 1

4
�(ζ)−1/2 v(ζ ) = 3

4

d2

dζ 2
log p(ζ )

We use (33) as a counterexample to the bispectrality. It is seen that there is no change of
parameter t2 → f (t1, t2) combined with the translation z → z + t1 in (33), such that p2 or q2

becomes homogeneous (with some weights) in z and t2. Thus, different from the � = 1 case,
rescaling of variable z cannot be absorbed by a change of parameter t2. As a consequence,
potentials u, v in (36) cannot be z or k independent. Therefore, it is impossible, in general, to
set a bispectral problem with the second-order differential operator in z (or k) when � = 2.

7. Integrable dynamics of charges

The charge configurations studied above can be viewed as fixed points of some dynamical
systems [8].

Lemma 4. Let two polynomials p(z, t) = ∏n
i=1(z − zi(t)) and q(z, t) = ∏n+m

i=n+1(z − zi(t))

satisfy the following bilinear equation:

q
dp

dt
− �p

dq

dt
= {p, q}�. (37)

Then the roots zi(t), i = 1, . . . , n + m, satisfy the system of ordinary differential equations

dzi

dt
=

n+m∑
j �=i=1

Qj

zi − zj

= 1

Qi

∂E

∂zi

(38)

where

Qi =
{

1 i = 1, . . . , n

−� i = n + 1, . . . , m + n.

It follows from the above lemma that the critical points of energy (11) are fixed points of
(38). Although, as seen from the previous considerations, the existence of such critical points
depends on values m, n and �, equation (37) has t-dependent polynomial solutions for any
integer m, n � 0 and real �.
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Although (38) (or equivalently (37)) is not a Hamiltonian system, it can be embedded in
the Hamiltonian flow.

Proposition 3. The dynamical system (38) is a trajectory of a system with the Hamiltonian

H = 1

2

n+m∑
i=1

Qi

(
dzi

dt

)2

+
n+m∑

i<j=1

QiQj(Qi + Qj)

(zi − zj )2
. (39)

In other words, the Hamiltonian equations of motion

d2zi

dt2
=

n+m∑
j �=i=1

Qj(Qi + Qj)

(zi − zj )3

are corollaries of (38).

Proof. This proposition is a corollary of a more general result proved in [8]. �

It is a nontrivial fact that the Hamiltonian system of the charges interacting through two
body potentials is also a corollary of a lower order dynamical system of pairwise interacting
points. In general, such a property is equivalent to compatibility of a highly overdetermined
system of equations. Perhaps, elliptic generalizations of (38) are the only systems satisfying
such conditions [8].

It is easy to note that, when � = 1, equation (39) is a sum of two independent Hamiltonians

H = H1 + H2 H1 =
n∑

i=1

(
dzi

dt

)2

−
n∑

i<j=1

2

(zi − zj )2

H2 =
n+m∑

i=n+1

(
dzi

dt

)2

−
n+m∑

i<j=n+1

2

(zi − zj )2
.

Each of them belongs to the completely integrable (in the Liouville sense) Calogero–Moser
system [9]. As a corollary (38) is integrable when � = 1.

Equation (39) is also the Calogero–Moser Hamiltonian if � = −1.
In general, (39) is not reduced to known integrable Hamiltonians.
It is conjectured in [8] that (38) is integrable for any real � in the sense that there exist

2(n + m) − 1 functionally independent real constants of motion which are rational functions
of zi and z∗

i (an asterisk denotes the complex conjugation and i = 1 + · · · + n + m).
It can be seen from the above discussion that the case � = 1 has particular significance

both in the problem of rational integrals (1) and from the point of view of integrable
Hamiltonian systems. It is interesting to establish the role of the second case � = 2 in
the theory of the dynamical system (38).

8. Conclusion

The principal question in this paper to be addressed is the existence and explicit representation
of the Baker-Akhieser function (or equivalently p(k, z), q(k, z)) for � = 2. It is worth
mentioning a useful generalization (interesting in itself ) which might help to find the answer:
by analogy with the � = 1 case, one may consider equilibrium of charges on a cylinder.
Recall that (e.g. see [4, 8]) equilibrium configurations for � = 1 are zeros of trigonometric
polynomials obtained by a finite number of Darboux transformations from the free Schrödinger
operator on a circle. In such a setting, both the Adler–Moser polynomials and � = 1 rational
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Baker–Akhieser function can be obtained by choosing different parameters in the limit when
the radius of the cylinder goes to infinity.

It might be interesting to examine a similar procedure obtaining an analogue of
proposition 1 for the cylinder.

Another interesting question, as mentioned before, is to understand the role of the case
� = 2 in the theory of dynamical systems (38) and integrability of the related Hamiltonians.

Finally, we would like to mention the relation with the reduced model of superconductivity
[10], the Gaudin magnet model [7] on one hand and the � = 2 equilibrium configurations
on the other. These models are sets of commuting quantum Hamiltonians acting on a
finite-dimensional Hilbert space. Equations for the Hamiltonian eigenvalues are equilibrium
conditions for a set of charges of value −2 located in the complex plane, subject to mutual
repulsion, and attraction of charges of value 1 located at positions defined by the parameters of
the Hamiltonian. The � = 2 case considered in the present work corresponds to the Richardson
(Gaudin) models with special restrictions imposed on the parameters of the Hamiltonian. It is
interesting to examine the relations between such models and establish their special properties
connected with the � = 2 case.
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